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1. Graphing 
A graph is one of the most useful tools for representing, understanding, and quantifying the relationship 
between two variables.  

• The independent variable—the one that you control—typically goes on the 𝑥𝑥-axis.  
• The dependent variable—the one that responds to changes in the independent variable—goes on 

the 𝑦𝑦-axis.  

In this case, we say that we have a graph of 𝑦𝑦 as a function of 𝑥𝑥, or 𝑦𝑦 vs. 𝑥𝑥.  

1.1. Graphing Best Practices 
In order to determine whether an apparent trend is real—whether the equation modeling the data actually 
means anything—we need several data points over a wide range. In this course, the rules are 

• Collect at least six to eight data points. 
• Make the largest value of the independent variable a factor of ten (or more) larger than the 

smallest value. 

All graphs should have the following: 

1. Title. The title describes the nature of the data being graphed. The dependent variable is 
mentioned before the independent variable (the 𝑦𝑦-axis variable before the 𝑥𝑥-axis variable, or 𝑦𝑦 vs. 
𝑥𝑥). 

The title should not merely restate what’s on the axis labels. A title like “velocity vs. time” would 
be inadequate: it doesn’t describe the experiment any more than axis labels would. A more 
complete title would be “Average velocity of fall vs. time of fall.” In Figure 1, the title is still 
short, but it is descriptive of the experiment. 

2. Proper scale. The plotted points should use more than half of the available space along each axis. 
If Excel does not do this automatically, the axis bounds should be reset manually. 

In general, it is good practice to include the point (0, 0) on the graph. Do so unless it would 
contradict the previous paragraph or you have some other good reason not to. 

3. Axis labels. Both axes should be labeled with both the quantity being measured and the units in 
which that quantity is measured. The quantity can be labeled either with the variable symbol or 
the English word, but not both. In Figure 1, the axes are labeled with English words, but the 
labels could have been “H (cm)” and “M (kg)” instead. 

Figure 1: Example of graphing best practices. 
The data represent a hypothetical experiment 
where cylinders of the same diameter (25 cm) 
are made and their masses are measured. 



1.2. Linearization 

3 

4. Trend line. Any graph of linear data should include a linear trend line. In the next section, we 
discuss how to deal with non-linear data. 

5. Equation of the line. Any graph of linear data should include the equation of the trend line in the 
form 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏, where 𝑦𝑦 and 𝑥𝑥 are replaced with the dependent and independent variables 
actually being plotted, and the slope 𝑚𝑚 and intercept 𝑏𝑏 have their numerical values and units. 

In Figure 1, the equation is Mass = (1.121 kg/cm)Height + (0.3371 kg). The English words, 
rather than variable symbols, are used to avoid ambiguity with unit abbreviations. If you want to 
use variable symbols instead, you must follow the scientific convention that variable symbols are 
italic and unit abbreviations are not, in which case you would have 𝑀𝑀 = (1.121 kg/cm)𝐻𝐻 +
(0.3371 kg) . 

The meaning of the slope of the graph above is that increasing the height of the cylinders by 1 cm 
increases the mass by 1.121 kg. The meaning of the intercept is that as the height of the cylinders 
goes to 0 cm, the mass would go to 0.3371 kg. This does not really make sense (we’d expect it to 
go to zero), but it will when we talk about uncertainty in the slope and intercept in Section 2.7. 

6. R2. The square of the linear correlation coefficient is a statistical tool which measures how well 
the data points fit to the trend line. A value of 0 would indicate no linear correlation between the 
points, and a value of 1 would signify perfect linear correlation. The R2 value is optional, but it 
may be useful when deciding whether the data needs to be linearized. 

1.2. Linearization 
Straight-line relationships are the easiest to understand. Often, if the relationship between the variables is 
not linear, we will change what we’re graphing so that it is a straight line. There are many reasons to do 
this, though perhaps the most important is that it’s (usually) easy to tell by looking whether some 
relationship is linear. If it is curved, it’s often difficult to tell whether, for example, 𝑦𝑦(𝑥𝑥) ∝ 𝑥𝑥2 or 𝑦𝑦(𝑥𝑥) ∝
𝑥𝑥3 just by looking. 

This process of re-graphing different quantities to make the resulting graph linear is called linearization. 
Here is how to do it for some common graph shapes: 

Graph Shape Written Relationship Modification Required 
to Linearize Graph 

Algebraic 
Representation 

 

As 𝑥𝑥 increases, 𝑦𝑦 remains 
the same. There is no 
relationship between the 
variables. 

Do not linearize the graph. Determine the 
average and standard deviation. 

 

As 𝑥𝑥 increases, 𝑦𝑦 increases 
proportionally 𝑦𝑦 is directly 
proportional to 𝑥𝑥. 

None 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏 
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Graph Shape Written Relationship Modification Required 
to Linearize Graph 

Algebraic 
Representation 

 

As 𝑥𝑥 increases, 𝑦𝑦 decreases. 
𝑦𝑦 is inversely proportional 
to 𝑥𝑥. 

Graph 𝑦𝑦 vs. 1/𝑥𝑥. 𝑦𝑦 = 𝑚𝑚 �
1
𝑥𝑥� + 𝑏𝑏 

 

𝑦𝑦 is proportional to the 
square of 𝑥𝑥. 

Graph 𝑦𝑦 vs. 𝑥𝑥2. 𝑦𝑦 = 𝑚𝑚𝑥𝑥2 + 𝑏𝑏 

 

𝑦𝑦 is proportional to the 
square root of 𝑥𝑥, or the 
square of 𝑦𝑦 is proportional 
to 𝑥𝑥. 

Graph 𝑦𝑦2 vs. 𝑥𝑥. 𝑦𝑦2 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏 

Graph 𝑦𝑦 vs. √𝑥𝑥. 𝑦𝑦 = 𝑚𝑚√𝑥𝑥 + 𝑏𝑏 

 

2. Introduction to Uncertainty 
2.1. Estimating Values and Uncertainties 
Whenever we measure a quantity in lab, it is important to know not only the value of the quantity, but 
also how sure we are that the value is correct. 

Every time we measure a quantity, there will be some uncertainty in the measurement. This uncertainty 
can come from any (and often more than one) of the following: 

• The resolution of the instrument; 
• Difficulty in precisely aligning instruments; 
• Human limitations, like reaction time; and 
• Inherent “fuzziness” of the quantity being measured. 

Typically, to determine the uncertainty, we make an estimate based on what we know about our 
measurement instruments. 

2.2. Measurements Relative to a Scale 
Many of our measurements consist of comparing an object to a fixed 
scale. In PHYS 250 and 251, the most common examples are 

• Rulers. We determine the length of something by comparing it 
to the markings on the ruler (see Figure 2). 

• Triple-beam balances. We determine the mass of something 
by figuring out where to put the sliding masses to balance the object on the tray, and we read the 

0 1 2 3 4

Figure 2: Measurements with a ruler. 
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mass by looking at the locations of the sliding masses relative to the scales (basically rulers) 
printed on the beams. 

The best estimate of the length of the box in Figure 2 is familiar: just read the scale to find 𝐿𝐿best =
3.35 cm. But what is the uncertainty? Normally, we use the following rule. 

For the ruler, the smallest marking is 0.1 cm, so the uncertainty is 𝛿𝛿𝐿𝐿 = 0.05 cm. The 𝛿𝛿 is a lowercase 
Greek letter delta. This notation is fairly standard: a 𝛿𝛿 before a variable means “the uncertainty in that 
variable.” 

The standard method for reporting a number with an uncertainty is as follows. 

The length of the object in Figure 2 is then 𝐿𝐿 = 𝐿𝐿best ± 𝛿𝛿𝐿𝐿 = (3.35 ± 0.05) cm.  

Let’s make some comments on the meaning of this. 

• We think the length of the object is 𝐿𝐿best = 3.35 cm. 
• However, because the ruler is only marked in 0.1 cm increments, we can only say with certainty 

that the length of the object is between 𝐿𝐿best − 𝛿𝛿𝐿𝐿 = 3.35 cm − 0.05 cm = 3.30 cm and 𝐿𝐿best +
𝛿𝛿𝐿𝐿 = 3.35 cm + 0.05 cm = 3.40 cm. 

2.3. Significant Figures and Uncertainty 
We’ll reexamine the rule of thumb above to 
see when it applies, as well as how 
significant figures and uncertainties are 
related. To do this, we’ll use Figure 3, which 
shows an object being measured with three 
differently-calibrated meter sticks.  

The top meter stick has no markings except 
the left and right ends, which are 1 m apart. 

Then the rule of thumb is not reasonable—most people can accurately estimate the length more precisely 
than to the nearest 0.5 m. A more reasonable estimate of the uncertainty would be one tenth of the 
smallest marking, or 0.1 m. In the top drawing, then, we might say that the length of the object is 
(0.3 ± 0.1) m.  

The middle meter stick is marked to the nearest 0.1 m, and the added markings allow us to make more 
precise estimates of the length. One tenth of the smallest intervals, 0.01 m, is again reasonable, giving a 
length of (0.27 ± 0.01) m.  

Finally, we consider the bottom meter stick, marked to the nearest 0.01 m. These markings are too close 
to confidently estimate to the nearest tenth of that, and the rule of thumb comes into play: we choose half 
the smallest interval, or 0.005 m. We take the length to be (0.270 ± 0.005) m. 

Rule of thumb: When reading values from a scale, the uncertainty is half the size of the smallest 
interval marked on the scale. 

Standard notation for reporting a measured quantity 𝒙𝒙: Write the best estimate value plus or 
minus the uncertainty: 

𝑥𝑥 = 𝑥𝑥best ± 𝛿𝛿𝑥𝑥 

 

Figure 3: Measuring an object with three scales. 
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Looking at the last sentence of each of the three previous paragraphs reveals a pattern. As we increase the 
precision of our meter stick, the uncertainty decreases. Each time it gains a decimal place, the number of 
significant figures in the measured value increases by one. 

We will discuss significant figures further later (see Section 3). 

2.4. Relative Uncertainty 
In deciding whether a measurement is sufficiently precise, the absolute uncertainty (which we’ve so far 
just called the “uncertainty”) is not very important. For example, if you are drawing lines to mark a 
football field, it doesn’t really matter if the lengths are off by an inch. If you are measuring the thickness 
of your thumb and you’re off by an inch, your measurement is completely wrong! 

We quantify this using the concept of relative uncertainty, sometimes called percent uncertainty. Here is 
the definition:  

Returning to Figure 2, the relative uncertainty in the length of the object from before is then 

𝛿𝛿𝐿𝐿
𝐿𝐿

× 100% = 0.05 cm
3.35 cm

× 100% = 1.5%. 

Suppose that the width of that bar is 𝑊𝑊 = (0.45 ± 0.05) cm. The relative uncertainty in the width is 

𝛿𝛿𝑊𝑊
𝑊𝑊

× 100% = 0.05 cm
0.45 cm

× 100% = 11%. 

As a rule of thumb, relative uncertainties should be smaller than 𝟓𝟓%. Our length measurement, then, is 
quite good, but the width measurement is not. Ideally, in such a situation, we would try to find a more 
precise measurement device (in this case, calipers would be good; see Section 5.2) or an alternate method 
of measurement, but in introductory labs, that is not always possible. 

2.5. Uncertainties in Calculated Values 
Often, what we want to know cannot be measured directly. We instead have to calculate it from things 
that we can measure. How do we find the uncertainty in the calculated value? We will explore this using 
two examples involving our bar: perimeter and area. 

The best estimate for the perimeter of the bar is given by the usual formula:  

𝑃𝑃best = 2𝐿𝐿best + 2𝑊𝑊best = 2(3.35 cm) + 2(0.45 cm) = 7.6 cm. 

Relative uncertainty in a quantity 𝒙𝒙:  

relative uncertainty =
absolute uncertainty

measured value
× 100% 

= 𝛿𝛿𝑥𝑥
𝑥𝑥best

× 100% 

 

 

 

Uncertainty and significant figures: 

1. Experimental uncertainties always have one significant figure. 
2. The best-estimate value of the measured quantity has the same number of decimal places as 

the uncertainty. 
3. As a result, the number of significant figures in the best-estimate value is directly related to 

the experimental uncertainty and, therefore, to the precision of the measurement device. That 
is, the number of significant figures provides information about the precision of the 
measurement. 



2.5. Uncertainties in Calculated Values 

7 

To find the uncertainty, we have to note that there are two things going on in the formula for 𝑃𝑃 : 
multiplication by a precise constant, then addition. The rules for both are straightforward. 

The perimeter depends on 2𝐿𝐿best  and 2𝑊𝑊best . In both cases, the precise constant is 𝐾𝐾 = 2, so 

𝛿𝛿(2𝐿𝐿) = 2𝛿𝛿𝐿𝐿 = 2(0.05 cm) = 0.1 cm          and            𝛿𝛿(2𝑊𝑊 ) = 2𝛿𝛿𝑊𝑊 = 2(0.05 cm) = 0.1 cm. 

We combine the two terms using the rule for addition and subtraction. 

Since 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (2𝐿𝐿best) + (2𝑊𝑊best), the overall uncertainty is 

𝛿𝛿𝑃𝑃 = 𝛿𝛿(2𝐿𝐿) + 𝛿𝛿(2𝑊𝑊 ) = (0.1 cm) + (0.1 cm) = 0.2 cm. 

Then, in standard form, the perimeter can be written 

𝑃𝑃 = (7.6 ± 0.2) cm. 

Now suppose we want to find the area. The best value is 

𝐴𝐴best = 𝐿𝐿best𝑊𝑊best = (3.35 cm)(0.45 cm) = 1.5 cm2. 

The uncertainty can be estimated using the following rule. 

Applying this rule to the area, we have 

𝛿𝛿𝐴𝐴
𝐴𝐴best

= 𝛿𝛿𝐿𝐿
𝐿𝐿best

+ 𝛿𝛿𝑊𝑊
𝑊𝑊best

= 0.015 + 0.11 = 0.12. 

Uncertainties with multiplication and division: If a quantity 𝑄𝑄 is calculated by multiplying or 
dividing other quantities,  

𝑄𝑄 = 𝑎𝑎 × 𝑏𝑏 × ⋯
𝑥𝑥 × 𝑦𝑦 × ⋯

, 

the relative uncertainties add: 

𝛿𝛿𝑄𝑄
𝑄𝑄best

= 𝛿𝛿𝑎𝑎
𝑎𝑎best

+ 𝛿𝛿𝑏𝑏
𝑏𝑏best

+ ⋯ + 𝛿𝛿𝑥𝑥
𝑥𝑥best

+
𝛿𝛿𝑦𝑦

𝑦𝑦best
+ ⋯ 

 

 

 

Uncertainties with multiplication by a constant: If a quantity 𝑄𝑄 is calculated by multiplying or 
dividing another quantity by a precise constant 𝐾𝐾 ,  

𝑄𝑄 = 𝐾𝐾𝑥𝑥, 

the absolute uncertainty is multiplied by the same constant: 

𝛿𝛿𝑄𝑄 = 𝐾𝐾𝛿𝛿𝑥𝑥. 
 

 

 

Uncertainties with addition and subtraction: If a quantity 𝑄𝑄 is calculated by adding or subtracting 
other quantities,  

𝑄𝑄 = (𝑎𝑎 + 𝑏𝑏 + ⋯ ) − (𝑥𝑥 + 𝑦𝑦 + ⋯ ), 

the absolute uncertainties add: 

𝛿𝛿𝑄𝑄 = (𝛿𝛿𝑎𝑎 + 𝛿𝛿𝑏𝑏 + ⋯ ) + (𝛿𝛿𝑥𝑥 + 𝛿𝛿𝑦𝑦 + ⋯ ). 

Note that it does not matter whether you’re adding or subtracting. The uncertainties add either way. 
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Note that we have canceled out the 100% in each term. The relative uncertainty in the area is then 
0.12 × 100% = 12%. The absolute uncertainty is 

𝛿𝛿𝐴𝐴 = 𝛿𝛿𝐴𝐴
𝐴𝐴best

𝐴𝐴best = (0.12)�1.5 cm2� = 0.19 cm2. 

We can then write the area in the standard form as 

𝐴𝐴 = (1.5 ± 0.2) cm2. 

2.6. Uncertainties in Repeated Measurements 
When an individual measurement is repeated many times, it is natural to expect to get the same result 
every time. However, due to random, uncontrollable factors, this is often not the case. We usually will 
take as our best estimate the mean or average: 

The uncertainty is then the standard deviation. 

 

For example, if you use a stopwatch to measure the time a ball takes to fall 3 meters, and you do this five 
times, you may get values like those in the table. Then, the best estimate of the time is the average: 

𝑏𝑏best = 𝑏𝑏 ̅ = (0.61 s) + (0.63 s) + (0.60 s) + (0.59 s) + (0.64 s)
5

 
= 0.614 s 

When reporting the final result, we will need to take significant figures into 
account, but we want to keep extra digits for the next calculation. 

To find the uncertainty, we calculate the standard deviation: 

𝛿𝛿𝑏𝑏 = 𝜎𝜎𝑏𝑏 = �
(0.61 − 0.614)2 + (0.63 − 0.614)2 + (0.60 − 0.614)2 + (0.59 − 0.614)2 + (0.64 − 0.614)2

5 − 1
 s 

= 0.02 s 

The value of the fall time is then 𝑏𝑏 = (0.61 ± 0.02) s. 

In practice, mean and standard deviation will be calculated in Excel, rather than by hand, using the 
functions =AVERAGE(<CELLS>) and =STDEV.S(<CELLS>). 

Best estimate in repeated measurements—mean or average: If a quantity 𝑥𝑥 is measured N times, 
with the results being 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 , the best estimate of the value of 𝑥𝑥 will usually be the average  �̅�𝑥: 

𝑥𝑥best = �̅�𝑥 =
𝑥𝑥1 + 𝑥𝑥2 + ⋯ + 𝑥𝑥𝑁𝑁

𝑁𝑁
= 1

𝑁𝑁 � 𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1
. 

 

 
Uncertainty in repeated measurements—standard deviation: If a quantity 𝑥𝑥 is measured N times, 
with the results being 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 , with an average value of 𝑥𝑥best = �̅�𝑥, the uncertainty in the value 
of 𝑥𝑥 will usually be the standard deviation of 𝑥𝑥, 𝜎𝜎𝑥𝑥, given by 

𝛿𝛿𝑥𝑥 = 𝜎𝜎𝑥𝑥 = �
�𝑥𝑥1 − �̅�𝑥�

2 + �𝑥𝑥2 − �̅�𝑥�
2 + ⋯ + �𝑥𝑥𝑁𝑁 − �̅�𝑥�

2

𝑁𝑁 − 1
=

⎷
��
�

1
𝑁𝑁 − 1 ��𝑥𝑥𝑖𝑖 − �̅�𝑥�

2
𝑁𝑁

𝑖𝑖=1
. 

 

 

Trial Time (s) 
1 0.61 
2 0.63 
3 0.60 
4 0.59 
5 0.64 
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2.7. Uncertainty in Fit Parameters 
Excel’s Regression Analysis tool allows you to find the uncertainty in the slope and intercept of fitted 
data. It’s not enabled by default, but it is not difficult. 

Enabling Regression Analysis 
The following steps need to be followed in Excel only once (per user). 

1. Go to File → Options. 
2. Click on Add-ins. 
3. Under “Inactive Application Add-ins,” click on Analysis ToolPak.  
4. Near the bottom of the dialog, click the Go button next to “Manage: Excel Add-ins.” 
5. In the dialog that opens, check Analysis ToolPak, then click OK. 
6. If you are returned to the Options dialog, click OK. 

Doing Regression Analysis 
To do regression analysis, follow these steps: 

1. Go to the Data ribbon. 
2. In the “Analysis” block toward the right, click on Data Analysis. 
3. Select Regression, and click OK. 
4. Select the appropriate ranges of cells for “Input Y Range” and “Input X Range.” Then click OK. 
5. A new sheet will be created with a lot of statistical information. The relevant part is in the 

bottom-left. For the data in Figure 1 (back in Section 1.1), the result is this: 

The Intercept row gives information about the 𝑦𝑦-intercept, and the X Variable 1 row tells you about the 
slope. The Coefficients column gives the best-estimate values of the intercept and slope, and the Standard 
Error column provides the uncertainties in the intercept and slope.  

For these data, the slope is then (1.12 ± 0.02) kg/cm. The intercept is (0.3 ± 0.7) kg, meaning that any 
intercept between (0.3 − 0.7) kg = −0.4 kg and (0.3 + 0.7) kg = 1 kg is consistent with the experiment. 
This range includes 0 kg, so the experimental data are consistent with the expectation that a cylinder with 
a diameter of 0 cm would have no mass. 

3. Significant Figures 
3.1. Significant Figures in Measured Quantities 
To summarize Section 2.3, the number if significant digits in a measured quantity is determined by the 
uncertainty as follows: 

1. Determine the best estimate and the uncertainty. Make sure that they are in the same units. 
2. Keep only one digit in the uncertainty. 
3. Keep the same number of decimal places in the best estimate as there are in the uncertainty. 

For example, suppose measurement yields 𝑥𝑥best = 3.50192 m and 𝛿𝛿𝑥𝑥 = 0.0124 m. We can keep only one 
digit in the uncertainty, so we round it to 𝛿𝛿𝑥𝑥 = 0.01 m. This goes to two decimal places, so we keep two 
decimal places in the best estimate, rounding to 𝑥𝑥best = 3.50 m. 

  Coefficients Standard Error 
Intercept 0.337128 0.712021 
X Variable 1 1.120978 0.022287 
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3.2. Zeros and Significant Figures  
The rules for interpreting zeros when considering significant digits are 

1. All non-zero digits in a measurement are considered significant. 
2. Zeros are significant when they are bounded by non-zero digits. 
3. If a decimal point is present, all zeros following non-zero digits are significant (e.g. a 

measurement of 30.00 kg has four significant digits). 
4. If a decimal point is not present, all zeros following the last non-zero digit are not significant—

they are placeholders only (e.g. a measurement of 160 N has two significant figures). 
5. Zeroes preceding the first non-zero digit are not significant—they are placeholders (e.g. a 

measurement of 0.00610 m has three significant figures). 

3.3. Significant Digits When Multiplying and Dividing 
When multiplying numbers, the result has the same number of significant digits as the number with the 
fewest significant digits. Here are some examples: 

• 3.142 × 2.91 = 9.14322. The second number, 2.91, has three significant figures, while 3.142 has 
four. The result should then have three digits, and we round to 9.14. 

• 0.3 × 19.1 = 5.73. Here the first number has only one significant digit, so the answer rounds to 6. 

3.4. Significant Digits When Adding and Subtracting 
When numbers are added or subtracted, the result is rounded so that it has the same number of decimal 
places as the number with the fewest decimal places. Here is an example: 

Since 21.04 has only two decimal places, the result must be rounded to the second decimal place, giving 
32.06. 

3.5. Rules for Rounding 
Note: Only round the final answer. Do not round intermediate steps. 

In grade school, most people are taught that 0.5 rounds up to 1, while 0.49̅ rounds down. In science, 
rounding like this introduces systematic error, and we instead follow these rules: 

1. If the leftmost digit to be removed is greater than 5, round up (e.g. 4.66 becomes 4.7). 
2. If the leftmost digit to be removed is less than 5, round down (e.g. 4.64 becomes 4.6). 
3. If the leftmost digit to be removed equals 5: 

a. If the preceding digit is odd, round up (e.g. 4.75 becomes 4.8) 
b. If the preceding digit is even, round down (e.g. 4.65 becomes 4.6) 

4. Putting Things Together: An Example 
Consider a slight variation on the example of Figure 1. Suppose instead of varying the height of the 
cylinder, we vary the diameter. 

 3 . 0264 
 21 . 04 

+ 7 . 99219 
 32 . 05859 
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4.1. Making a Graph 
We follow best practices from Section 1.1 to graph the data. 

 

4.2. Linearization 
The scatter plot does not look linear. It looks roughly quadratic. We can refer to the table in Section 
Linearization1.2 and note the shape is similar to the fourth row. Therefore, we leave the vertical axis 
unchanged and square the diameter in the horizontal axis. 

The data are now very linear (the correlation coefficient is very close to 1). 

4.3. Uncertainty in Slope and Intercept 
Regression analysis (Section 2.7) gives the following results: 

From the Intercept row, we get 

(intercept) = (−0.1 ± 0.6) kg. 

Figure 4: Measured mass vs. varied diameter for 
cylinders of fixed height. The data are not linear, 
so we do not include trendline, equation, or R2.  
Axes are still labeled with both quantity name 
and units, and the data take up most of the 
range, both horizontally and vertically. 

Figure 5: Linearized data from Figure 4. Since 
we are doing math on the quantities, we have 
switched to variable symbols. Note that the 
variables are italic while the units are upright. 
We now include a trendline and an equation. 

  Coefficients Standard Error 
Intercept -0.08743 0.646363 
X Variable 1 0.093298 0.000679 
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From the X Variable 1 row, we get (slope) = (0.0933 ± 0.0007) kg/cm2. We can convert this to normal SI 
units using 100 cm = 1 m: 

(slope) = (933 ± 7) kg/m2. 

Note that we have followed the rules for significant figures outlined in Sections 2.3 and 3.1. 

4.4. Interpreting the Equation and Comparing to Theory 
You may recall that the volume of a cylinder of height 𝐻𝐻 , radius 𝑅𝑅, and diameter 𝐷𝐷 = 2𝑅𝑅 is  

𝑉𝑉 = 𝜋𝜋𝐻𝐻𝑅𝑅2 = 𝜋𝜋𝐻𝐻(𝐷𝐷/2)2 = 𝜋𝜋𝐻𝐻𝐷𝐷2/4. 

The definition of density is 𝜌𝜌 = 𝑀𝑀/𝑉𝑉 , where 𝑀𝑀  is mass. Rearrange this to get 𝑀𝑀 = 𝜌𝜌𝑉𝑉 , and substitute 
the expression for volume: 

𝑀𝑀 = 𝜋𝜋
4

𝜌𝜌𝐻𝐻𝐷𝐷2 + 0. 

Compare this to the standard form of a line, 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏, which in our graph is 

𝑀𝑀 = (slope)𝐷𝐷2 + (intercept). 

We see that the intercept should theoretically be zero, which agrees with the fit. The slope is whatever is 
multiplied by the independent variable (𝐷𝐷2), so 

(slope) = 𝜋𝜋
4

𝜌𝜌𝐻𝐻. 

Therefore, we can find the density of the cylinders by rearranging: 

𝜌𝜌 = 4
𝜋𝜋𝐻𝐻

(slope) = 4
𝜋𝜋(0.50 m) �

933 kg
m2 � = 2375.814 kg/m3.  

We can find the uncertainty in the density using the methods from Section 2.5. Suppose the uncertainty in 
𝐻𝐻  is 0.1 cm. Since the slope and 𝐻𝐻  combine by division and then are multiplied by a precise constant 
(4/𝜋𝜋), we can use the rule for multiplication and division (add the relative errors), and then multiply the 
result by the same constant: 

𝛿𝛿𝜌𝜌
𝜌𝜌

= 4
𝜋𝜋 �

𝛿𝛿(slope)
slope

+ 𝛿𝛿𝐻𝐻
𝐻𝐻 � = 4

𝜋𝜋 �
7

933
+ 0.1

50 � = 0.011813. 

The absolute uncertainty is then 𝛿𝛿𝜌𝜌 = (𝛿𝛿𝜌𝜌/𝜌𝜌)𝜌𝜌 = (0.011813)�2375.814 kg/m3� = 28.065 kg/m3. Rounding 
to the correct number of significant figures, we have 

𝜌𝜌 = (2380 ± 30) kg/m3. 

Note that since there is no decimal point, the zeros are not significant—they are merely placeholders—as 
discussed in Section 3.2.  

5. Some Measurement Equipment 
5.1. Most Basic Lab Equipment 
Rulers, Meter Sticks, and Protractors 
The use of rulers, meter sticks, and protractors is straightforward and familiar, and in all three cases, the 
rule of thumb—the uncertainty in measurements is half the smallest marked interval—usually applies. 
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The exception is when it is difficult to align the measuring device with the object being measured. When 
that is the case, the uncertainty is larger. 

Triple-Beam Balances 
The triple-beam balance is an extremely precise measuring tool. The smallest marking is 0.1 g, Alignment 
is not an issue with a balance, so the exceptions to the rule of thumb are rare. The uncertainty is 0.05 g, or 
0.00005 kg. 

Stopwatches 
Most stopwatches report times to the nearest 0.01 s. The rule of thumb would suggest that the uncertainty 
is 0.005 s, but this is wrong. Human reaction time is significantly longer than 0.01 s, so the uncertainty in 
times measured using a stopwatch are much larger. Reaction time varies from person to person, but a 
typical value is about 0.2 s, so this is a reasonable value to use as the uncertainty. 

5.2. Vernier Calipers 
Vernier calipers are tools for measuring lengths very precisely. They consist of two scales: a fixed scale 
(called the main scale) marked in centimeters and a sliding scale, called the Vernier scale. The basic 
operation is shown here: 

 
1. Grip the object to be measured in the jaws, or, to measure the inner diameter of a hole, spread the 

jaws until the upper prongs (not shown in the figure) touch the edges of the whole. 
2. Look for where the 0 on the Vernier scale is on the main scale. The main-scale value directly to 

the left is the number of whole millimeters. In the figure, the big inset shows this to be 13 mm. 
3. Look at the markings (ignoring the numbers for now) on the two scales, paying attention to where 

they line up neatly. There are two possibilities: 
a. One line on the Vernier scale will line up exactly with a line on the main scale. The value 

on the Vernier scale where this happens is the number of tenths of a millimeter.  In the 
figure, the smaller inset shows this to be at 4.5, so the reading is (4.5)(0.1 mm) =
0.45 mm. 
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b. Two Vernier lines will appear to be equally well aligned and better aligned than any other 
markings. If that happens, take the average of the two values. 

4. Finally, add up the number of whole millimeters from Step 2 and the decimal part from Step 3 to 
get the length. In the figure, it’s 13 mm + 0.45 mm = 13.45 mm. 

The uncertainty in measurements with Vernier calipers is usually marked on the calipers somewhere. For 
most, it’s on the right edge of the Vernier scale (in the figure, it’s 0.05 mm; some mark it as 1/20 mm, 
which has the same value of 0.05 mm). 

5.3. Micrometers 
For more precision than calipers provide, you can use a micrometer. The figure shows its main parts.  

1. Place the object you want to measure between the anvil and the spindle. 
2. Rotate the adjustment knob until the anvil and spindle nearly touch the object to measure. 
3. Use the ratchet stop to tighten the rest of the way without over-tightening. 
4. Look at the exposed lines on the sleeve. 

a. The upper marks give the number of whole millimeters (in the figure, it’s 2 mm). 
b. If a lower mark is visible after the last upper mark, add 0.5 mm (in the figure, one is, so 

we have 2.5 mm). 
5. Now look at the markings on the thimble. They are marked in units of 0.01 mm. The thimble 

reading is the number on the thimble that aligns with the central, horizontal line on the sleeve. (In 
the figure, the reading is 24.7, or 0.247 mm.) 

6. Add the thimble reading from Step 5 to the sleeve reading from Step 4 to get the final size of the 
object (in the figure, we have 2.5 mm + 0.247 mm = 2.747 mm). 

Since the smallest markings on the micrometer are 0.01 mm apart, the rule of thumb gives an uncertainty 
of 0.005 mm. 
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5.4. Multimeters 
The basic measurement tool for circuits is the multimeter, so called 
because it combines a voltmeter to measure voltage, an ohmmeter to 
measure resistance, and an ammeter to measure current (some higher-
end models can also measure capacitance and even inductance). 

To use a multimeter, you have to choose three things: 

1. which input ports to use on the multimeter, 
2. where to connect the multimeter to the circuit, and 
3. where to position the multimeter setting dial. 

Half of point 1 is easy: the negative wire always goes into the port 
labeled COM (short for “common”). The positive wire goes into V/Ω 
for voltage or resistance measurements, A for measurements of 
currents less than 2 amps, or 20A to measure currents greater than 2 
amps and less than 20 amps. 

Measuring Voltage 
The multimeter should be connected in parallel with the part of the 
circuit you want to measure the voltage across. 

The dial should be within the DCV section for a dc voltage or within ACV for an ac voltage. 

The basic units for voltage are volts (symbol V). A positive value means that whatever is attached to port 
V is at higher potential than port COM. A negative value means that COM is at higher potential. 

Measuring Resistance 
To measure a resistance, first take the resistor or resistors you want to measure out of the rest of the 
circuit. Then connect the multimeter in parallel with the resistor (or combination of resistors). 

The dial should be within the OHM section. 

The basic units for resistance are ohms (symbol Ω). 

Measuring Current 
To measure the current through some component, remove a bit of wire (or a snap-circuit piece) which is 
in series with that component. Then attach the multimeter wires in place of that bit of wire. 

Turn the multimeter dial so that it is in the DCA section for a dc current or the ACA section for an ac 
current. 

The basic units for current are amperes, or amps (symbol A). A positive value means that current flows 
into port A (or 20A, whichever is connected) and out of port COM. A negative value means that current 
flows in the opposite direction. 

Choosing a Range/Precision 
Within each section, there are several options, each of which indicates the maximum value the meter can 
read if the dial is set to that option. The labels also tell you what SI prefix to apply to the units. Examples: 

• If the dial is set to 200μ in the DCA section, the maximum current that the multimeter can read is 
200 μA, and the number on the display is in microamps. 

• If the dial is set to 200K in the OHM section, the maximum resistance you can measure is 200 
kΩ, and the reading is in kiloohms.  
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• In the figure, the dial is set to 2m DCA, so the current is 1.234 mA, flowing into COM and out of 
A. 

For maximum precision, turn the dial to the smallest setting larger than the value to be measured (e.g. for 
a 19 kΩ resistor, use the 20K OHM setting; for a 21 kΩ resistor, you have to use the 200K OHM setting). 

If the display shows nothing but a 1, this means that the value you are trying to measure is too large for 
the current setting. 

The uncertainty rule of thumb generally works for multimeters: the uncertainty is half the smallest value 
for the current setting. The estimated last digit (not shown on the screen) should be 0 if the reading is 
stable or 5 if the last digit bounces between two consecutive values. For example, the current measured in 
the figure is 

• (−1.2340 ± 0.0005) mA if the value is not changing, or 
• (−1.2345 ± 0.0005) mA if the reading flips back and forth between −1.234 and −1.235. 
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