
Transport Experiment Documentation
Release 1.5.0

Thomas C. Flanagan

June 14, 2014





CONTENTS

1 Introduction 3
1.1 About the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Getting Started 5
2.1 Running from source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Testing some code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Project organization 9

4 Extending the Code: Instruments 11
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Module and class creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 The instrument specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Initialization and finalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.7 The action syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.8 Defining the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.9 Format string syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.10 Summary of potential problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Indices and tables 19

i



ii



Transport Experiment Documentation, Release 1.5.0

Contents:

CONTENTS 1



Transport Experiment Documentation, Release 1.5.0

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

Here is some random text. Blah, blah. And some more random text! Just can’t get enough!

1.1 About the software

The Transport Experiment program was written (and is still being updated) for running trans-
port measurements in the research group of Professor Nitin Samarth at the Pennsylvania State
University.

The project was begun, and most of the code was written, by Thomas C. Flanagan in 2013.

1.2 Acknowledgements

I would like to thank the following people for enabling this project:

• David Hopper, for valuable contributions to the code;

• Anthony Richardella, for various suggests for the interface, some of which were sensible;
and

• Abhinav Kandala, for giving me time to write it.

3



Transport Experiment Documentation, Release 1.5.0

4 Chapter 1. Introduction



CHAPTER

TWO

GETTING STARTED

2.1 Running from source

2.1.1 The Python Interpreter

The primary dependency for the system is the Python interpreter. The code was written using
verson 2.7.5. Note that any version greater or equal to than 3 will not work, mostly because the
dependencies in the following sections have not all been updated to reflect changes in going from
2.x to 3.x. The most significant of these (and the most important in the context of this program) is
PyVISA.

2.1.2 Dependencies

The following packages must be installed in order to run the program:

wxPython (2.8.12.1) wxPython is the graphical engine for the software. It was chosen for a num-
ber of reasons, some of which are listed below. #. It is fast, since it is merely a wrapper for
the C-based wxWidgets library. #. Its API is relatively intuitive. #. It is popular, so it can be
found in most (Debian-based) Linux repositories.

PyVISA (1.4) PyVISA is a library for interacting with GPIB and serial instruments.

numpy (1.7.1) and scipy (0.12.0) numpy and scipy are libraries for performing mathematical cal-
culations. They are closely linked so downloads and documentation can usually be found
together.

matplotlib (1.2.1) matplotlib is a plotting library which duplicates MATLAB in many ways.

The numbers in parentheses are, of course, versions. They are the versions under which the soft-
ware was written and, therefore, the most likely to work as expected. This does not necessarily
mean that other versions will not work. However, you must install versions which are compatible
with Python 2.7.

5

http://www.wxpython.org
https://pyvisa.readthedocs.org/en/latest/
http://www.numpy.org/
http://new.scipy.org/download.html
http://docs.scipy.org/doc/
http://matplotlib.org/


Transport Experiment Documentation, Release 1.5.0

2.1.3 Tools for managing documentation

As with any piece of software which multiple people may use and edit, it is essential to keep the
documentation up to date and accurate. There are a number of tools which have been used to
produce the documentation for this code in a clear and consistent way, and these are outlined in
this section.

Python libraries

Pygments Pygments is a package for syntax highlighting which is used by Sphinx.

Sphinx This documentation starts out as a set of plain-text documents in the markup language
reStructuredText, or reST. It is compiled into HTML, PDF, and HTML Help files using a
package called Sphinx.

sphinx_wxoptimize sphinx_wxoptimize is a set of scripts for fixing the HTML Help packages
produced by Sphinx so that it can be read in a reasonably decent manner by wxPython. You
can find it at PyPI.

It should be noted that the first two of the above, Pygments and Sphinx, can be installed
using pip, while the third, the script sphinx_wxoptimize, is already included in the
src/tools/docgen/manual folder, so it should not need to be installed.

numpydoc The in-code documentation uses an extension to the standard Sphinx library called
numpydoc, which allows for a cleaner-looking in-code syntax. Regenerating the API will
crash Sphinx if this is not installed.

External applications

LaTeX The PDF manual is, of course, generated using pdflatex, so LaTeX must be installed.

Subversion Keeping the most recent version of the software available to everybody using it is a
good idea, and for this project it is facilitated by Subversion. Download it. The most pop-
ular graphical client for Windows is TortoiseSVN. To use this software’s automatic updater
requires the command-line SVN tools. For Windows, the most common version is Slik Sub-
version, which can be downloaded here.

2.1.4 Tools

The most useful tool for this project is Eclipse, with the PyDev extension.

Instructions for installing this are coming soon.

2.2 Testing some code

Now let’s test some junk.

6 Chapter 2. Getting Started

http://pygments.org/
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
https://pypi.python.org/pypi/sphinx_wxoptimize/
https://pypi.python.org/pypi/numpydoc
http://tortoisesvn.net/
http://www.sliksvn.com/en/download


Transport Experiment Documentation, Release 1.5.0

def some_function(input_parameter):
’’’Print ‘input_parameter‘, then attempt to convert it
to a dictionary.
’’’
print input_parameter
try:

return dict(input_parameter)
except TypeError:

print ’Cannot do that’
return None

2.2. Testing some code 7



Transport Experiment Documentation, Release 1.5.0

8 Chapter 2. Getting Started



CHAPTER

THREE

PROJECT ORGANIZATION

The main software directory is called Transport, and this name is very important, since the
code refers this name to turn relative paths into absolute paths. From here on out, all paths will
be specified relative to this directory.

Figure 3.1: This is a random figure

9



Transport Experiment Documentation, Release 1.5.0

10 Chapter 3. Project organization



CHAPTER

FOUR

EXTENDING THE CODE:
INSTRUMENTS

Writing code for new instruments is usually quite straightforward (the main exception being
cryostats, which take quite a bit of work). Below are the basic instructions for how to go about
doing it and some pitfalls which would make the code fail.

4.1 Introduction

Since most instruments today follow a rather specific standard specified by IEEE, writing code
to run them is quite simple. Nearly all instruments which can be connected to the computer via
GPIB, USB, or RS232 implement VISA standards, and so the PyVISA module does all the work.
Further, the commands follow a fairly standard form.

The first step in coding a new instrument is to create a module for it. For everything to work, there
are a few requirements, which follow.

1. The module must be placed in the src.instruments package.

2. The module must contain a class which inherits from the
src.core.instrument.Instrument class.

3. The class constructor (the __init__() method) must have the signature of an Instrument,
it must call the its superclass constructor, and it must define all attributes of the class.

4. The new instrument must implement a class method getRequiredParameters() which
should return a list of src.core.instrument.InstrumentParameter objects. Each of
these objects indicates one attribute which must be specified in order for the instrument to
work. For most GPIB instruments, the list will include only one element: the VISA resource
address.

5. It must implement the methods initialize(), which opens a communication channel
with the instrument, and py:meth:finalize, which closes said communication channel. Note
that both of these methods are called automatically.

6. It must implement the getActions() method, which returns a list of
src.core.action.ActionSpec objects indicating what actions the instrument can
perform.

11



Transport Experiment Documentation, Release 1.5.0

Let’s consider these steps individually, with the SRS 830 Lock-In Amplifier as an example.

4.2 Module and class creation

The first is fairly obvious. The module name should be src/instruments/srs830.py.

The second step means that the class definition line should reference the Instrument object. The
module header, of course, must import this object:

from src.core.instrument import Instrument

The class definition line should then look like this:

class SRS830(Instrument):

4.3 The instrument specification

Configuring an instrument for use will often require a bit of information about the instrument.
These parameters are specified via instances of the InstrumentParameter class, which stores
four attributes:

description A short, user-readable description of the parameter.

value The value of the parameter. The default is an empty string.

allowed The values which the parameter will accept, specified as a list of strings. If set to None,
any value will be accepted.

formatString A string indicating how the value should be formatted. See Format string syntax.

For typical GPIB instruments, the only bit of such information will be its resource address, and so
the getRequiredParameters() method will return a single-element list as follows:

@classmethod
def getRequiredParameters(cls):

return [
InstrumentParameter(

description=’Visa Address’,
value=’’,
allowed=Instrument.getVisaAddresses,
formatString=’%s’

)
]

This method simply returns the default for the Instrument subclass. The actual value for an
instance is stored in the attribute _spec.

Warning: Specifying a value for allowed makes no sense unless the value is a string.

12 Chapter 4. Extending the Code: Instruments



Transport Experiment Documentation, Release 1.5.0

4.4 Initialization and finalization

The constructor must be of the form:

def __init__(self, experiment, name=’SRS830: Lock-in’, spec=None):
super(SRS830, self).__init__(experiment, name, spec)
self._inst = None
self._info = None

The requirement concerning the signature is, of course, implemented in the first line. Notice that
all but experiment are optional (they have default values specified). The second line calls the
parent class’s constructor, and the third and fourth lines create the class’s attributes, which will
be assigned actual values when the instrument is initialized (at the beginning of the experiment’s
execution), as will be described next.

The fourth step requires that the instrument implement the initialize() and finalize()
methods, which run at the beginning and the end of the experiment. Examples are the following:

def initialize (self):
"""Initialize the lock-in."""
self._inst = visa.instrument(self._spec[0])
info = [’Instrument: ’ + self._name,

’SRS 830: Lock-in amplifier’,
self._inst.ask(’*IDN?’)]

self._info = ’\n’.join(info)

def finalize (self):
"""Finalize the lock-in."""
self._inst.close()

In the initialize() method, the _inst attribute is set to a pyvisa.visa.Instrument ob-
ject. The argument to the constructor is the VISA resource address. The _info attribute is set to a
three-line string describing the instrument, including its user-defined name, its model, and what
it knows about itself.

In the finalize() method, the instrument communication channel is closed to free system re-
sources.

4.5 Actions

Most instruments implement two types of actions: simple actions, which can set or read values,
and scans, which repeat a simple action with multiple values. Regardless of its type, the action
must define the following values:

experiment The Experiment object which owns the instrument. This will nearly always be the
Experiment which owns the instrument, and so you can pass the attribute self._expt.

instrument The Instrument object which owns the action. This should nearly always be self.

description A short phrase describing the action in a way that users can understand.

4.4. Initialization and finalization 13



Transport Experiment Documentation, Release 1.5.0

inputs A list of parameters which will be sent to the instrument when it’s time for it to perform
the action.

outputs A list of parameters which the instrument will return once it has finished performing the
action.

string A template string which will be filled in for turning the complete action sequence into
strings for conveying information to the user.

method The (bound) method which will carry out the action. This will be discussed further later.

An action will be specified through a collections.namedtuple instance, ActionSpec, which
has three attributes: name, a one-word name for the action, mainly for lookup purposes; cls, the
Action class, or one of its subclasses, which will be used to construct the object; and args, a
dictionary containing the keys listed above and their respective values.

An ActionScan object must have one and only one input, which should be a list of three-element
tuples specifying the default range over which some quantity is varied. This range will be ex-
panded, and the values will be passed sequentially to the method specified in the ActionSpec.

4.6 Parameters

Parameters are specified through a collections.namedtuple instance, ParameterSpec,
which has attributes name and args. The first should be a short, single-word string to specify
the parameter, and the second is a dictionary containing the following properties:

experiment The src.core.experiment.Experiment object which owns the action which
owns the parameter.

description A short phrase describing the parameter in a way that users can understand.

value The default value for the parameter. It should be of the correct data type.

Note: If the action is an ActionScan, the value should be specified as a list of tuples
indicating the default scan components. For example, ’value’: [(0.0, 1.0, 0.1),
(1.0, 2.0, 0.5)] would by default scan from 0.0 to 1.0 in steps of 0.1 and then from 1.0
to 2.0 in steps of 0.5.

binName The default name for the data storage bin to which the value will be saved, or None if
it will not be saved by default.

binType The default type of data bin (either ‘column’ or ‘parameter’, or None if the data will not
be saved by default).

formatString A string indicating how the value should be formatted. See Format string syntax.

Note: If the action is an ActionScan, the formatString should end with ‘[]’

allowed A list containing the allowed values for the parameter. This only makes sense if the data
type is a string.

14 Chapter 4. Extending the Code: Instruments



Transport Experiment Documentation, Release 1.5.0

4.7 The action syntax

The getActions() method should return a list of ActionSpec objects specifying all the actions
which the instrument can perform (or, at least, all the actions which users of the instrument will
want to perform).

The syntax for defining such an ActionSpec is as follows

ActionSpec(
name=’set_vref’,
cls=Action,
args={

’experiment’: self._expt,
’instrument’: self,
’description’: ’Set reference voltage’,
’inputs’: [

ParameterSpec(
name=’vref’,
args={

’experiment’: self._expt,
’description’: ’Vref’,
’formatString’: ’%.4f’,
’binName’: ’Vref’,
’binType’: ’parameter’,
’value’: 0,
’allowed’: None,
’instantiate’: False

}
)

],
’string’: ’Set the sine-out voltage to $vref.’,
’method’: self.setReferenceVoltage

}
)

The name values are very important. The name of the input parameter here is ‘vref’, and you can
see that the same value occurs in the ‘string’ value for the ActionSpec. This is not a coincidence.
When the software attempts to create informative strings about a given action, it will fill in the
‘string’ value, replacing all occurances of “${name}” with the value of the parameter specified by
{name}.

Warning: The values of name must not contain spaces or special characters other than un-
derscores.

In the above code, the ‘method’ entry is set to self.setReferenceVoltage(). This is class
method bound to the instance of the class whose getActions() method is called. Note the lack
of parentheses at the end. This means that it is the method itself, and not the return value of the
method, which is being put in that slot.

4.7. The action syntax 15



Transport Experiment Documentation, Release 1.5.0

4.8 Defining the methods

Now, of course, to pass the setReferenceVoltage() to anything, the method must be defined
in the class.

The first step in defining such a method is to find out the command which will induce the instru-
ment to do what the Action wants. Referring to the manual for the SRS 830, we find that the
command to set the reference voltage is “SLVL”. Then the method to perform the action could be
written like this:

def setReferenceVoltage (self, vref):
self._inst.write(’SLVL %.4f’ % vref)
return ()

The arguments to the method are self, which is required in all methods, and vref, which is the
desired value for the reference voltage.

Warning: There are some important things to remember about the vref argument.
1. It has the same name as one of the ParameterSpec objects defined in the

getActions() method above. It is the value of that parameter which will be substi-
tuted into this method, so if the names of the arguments to the method are not exactly
the same as the names of the ParameterSpec objects defined in the ‘inputs’ bin of the
relevant ActionSpec, the software will crash.

2. It is passed in whatever type is natural to the parameter. Since the reference voltage is
a floating-point number, vref will be passed as a float. Therefore, since the SRS830
accepts ASCII string commands, the value must be turned into a string. That is why the
string substitution occurs in the write() call above.

3. If the method is bound to the ActionSpec of an ActionScan, the method must have
one and only one argument.

4.9 Format string syntax

Format strings follow format which is fairly standardized (it’s actually the same as in LabVIEW).
Such a string begins with the percent symbol. The final character depends on the data type:

type character
integer “d”
string “s”
float “f”
exponential “e”

For the last two data types, both floating-point, the precision is specified by a period followed by
the number of digits which should be printed after the decimal point. This bit should be between
the percent sign and the data-type indicator. For example, to the format a number into a string of
the form “2.012592e+02”, use “%.6e”.

There are actually considerably more options for customizing the string formatting, but they are
less frequently used. More information can be found in a variety of places. For examples in the

16 Chapter 4. Extending the Code: Instruments



Transport Experiment Documentation, Release 1.5.0

Python language specifically, see the official documentation

4.10 Summary of potential problems

Here is a recap of the simple mistakes which would cause the program to crash.

1. The names of the ParameterSpec objects defined under ‘inputs’ for the relevant
ActionSpec must precisely match the names of the arguments to the ‘method’ defined
by said ActionSpec.

2. The names of ParameterSpec objects must also precisely match the values of the substi-
tution strings (indicated by a dollar sign followed by the name) in the ‘string’ slot of the
relevant ActionSpec.

3. The value of each argument to an instrument method needs to be converted to an appropri-
ately formatted string if the natural type of the value is not already a string.

4. The value of ‘allowed’ for some ParameterSpec or InstrumentParameter should be
None unless the value of the parameter should be a string and only certain values are al-
lowed for that string, in which case ‘allowed’ should be a list of strings.

5. Values of the name attribute of instances of ActionSpec or ParameterSpec must not
contain spaces or special characters (except the underscore).

6. For ActionScan objects, the ‘formatString’ of the ParameterSpec should end with “[]”

7. An ActionScan must have one and only one input, whose value is a list of three-element
tuples which will be expanded into a range whose values will be passed sequentially into
the method.

4.10. Summary of potential problems 17

http://docs.python.org/2/library/stdtypes.html#string-formatting-operations


Transport Experiment Documentation, Release 1.5.0

18 Chapter 4. Extending the Code: Instruments



CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

19


	Introduction
	About the software
	Acknowledgements

	Getting Started
	Running from source
	Testing some code

	Project organization
	Extending the Code: Instruments
	Introduction
	Module and class creation
	The instrument specification
	Initialization and finalization
	Actions
	Parameters
	The action syntax
	Defining the methods
	Format string syntax
	Summary of potential problems

	Indices and tables

